	(-)
(To be filled	by the candidate by blue/black ball-point pen)
Roll No.	
Serial No. of OMR Ansy	Sheet 221.
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Skeet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Auswer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Auswer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places,
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMER sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to recent the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding raw of the Answer Sheet, by pen as mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer ance filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMP Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test,
- 14. If a candidate attempts to use any form of unfair means, he/she shatter liable to such punishment as

Total No. of Printed Pages: 48 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK रफ़ कार्य

-125

Mr. im Forensic Science code 10 (472)

원 17P/302/2**3**(i)

No. of Questions: 240

Time : 2 Hours

Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3 [Three] marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (3) This question paper contains two Sections, viz : Section-A and Section-B. Details of Section-A and Section-B are as follows :
 - (a) Section-A contains 60 questions from General Secinces and 20 questions of General Nature.
 - (b) Section-B contains four sub-sections namely: Biology, Chemistry, Mathematics and Physics with 40 questions in each. The candidate has to select only one of the four sub-sections of Section-B.

SECTION - A

- 01. Forensic Science is the application of science to:
 - (1) those criminal laws that are enforced by police agencies
 - (2) those civil laws that are enforced by police agencies
 - (3) those religious laws that are enforced by police agencies
 - (4) those criminal and civil laws that are enforced by police agencies

02.	Agglutination	describes	
-----	---------------	-----------	--

- (1) the separation of red blood cells by the action of an antibody
- (2) the clumping together of red blood cells by the action of an antibody
- (3) the non-clumping of red blood cells by the action of the antibody
- (4) the dissolution of red blood cells by the action of the antibody

03. Y-chromosome is:

- (1) the male sex harmones
- (2) the female sex harmones
- (3) the male sex choromosome
- (4) the female sex chromosome
- 04. The power of a lens is measured in:
 - (1) Diopters

(2) Aeon

(3) Lumen

(4) Candela

- 05. Albert Einstein was awarded Nobel Prize for his path-breaking research & formulation of the:
 - (1) Theory of Relativity
 - (2) Law of Photo-electric Effect
 - (3) Principle of Wave Particle Duality
 - (4) Theory of Critical Opalescence
- **06.** L.P.G. is a hydrocarbon consisting of a mixture of :
 - (1) Methane and Butane

(2) Propane and Butane

(3) Ethane and Propane

(4) Ethane and Butane

07	7. "P	encillin" which is used as	an ant	ibiotic, is obtained from :
	(1)	Bacteria	(2	200 D00 N00 D00 D00
	(3)	Algae	(4	
08	. "A	malgam" is term for an alle	y of a	metal with :
	(1)	Copper	(2)	
	(3)	Lead	(4)	
09	. Ne	winch scalic	is ior:	d 'jeeds' of content to their
	(1)		n .	
	(2)	. Really Social Syndication	1	
	(3)		vndice	tion .
	(4)	Recily Simple Synchroni	potion	non
	1000.00	- Par Official Offi	samon	Ten Kien in the Committee of the Committ
10.	Per ger	st - resistant cotton con etically engineered by ins	nmon) erting	y known as 'Bt-Cotton' is
	(1)	Bacterium	(2)	
	(3)	Microalgae	(4)	Protist
11.	Bra the	ss gets discoloured in air l following gases in air :	ecaus	e of the presence of which of
	(1)	Oxygen	(2)	Hydrogensulphide
	(3)	Carbon dioxide	(4)	
			8.88.8	Nitrogen
12.	And	mophily' is pollination by	•	
	(1)	Birds	. (2)	Wind
	(3)	Ants	3 450	Wind
		St.	. (4)	Bats
13.	Whi tem	ch of the following is a non perahere ?	metal	that remains liquid at room
	(1)	Phosphorus	35923	Est 8
	(3)	Chlorine	(2)	Bromine
. B	٠,	24000	(4)	Helium

14. Chlorophyll is a naturally ocur entral metal is:	8						
(1) Copper	(2) Magnesium						
(3) Iron	(4) Calcium						
15. Which of the following is used in	n pencils ?						
(1) Grapthite	(2) Silicon						
(3) Charcoal	(4) Phosphorus						
16. Which of the following substances under go 'Sublimation' on heating?							
(A) Iodine (B) Napthalene (C) (Camphor						
	(2) A and C						
(1) A and B (3) B and C	(4) All of them						
17. Consider the following stateme							
 A. Radon is the heaviest ga 	as						
B. Astatine is the rarest el							
ductor.	n-metal is also an electrical con						
Which of the following S	Statementl(s) is/are correct?						
(1) Only B	(2) A & B						
(3) B & C	(4) A, B & C						
which of the following is used	as a moderator in nuclear reacter?						
	(2) Graphite						
	(4) Ordinary water						
(3) Radium	St. Za						

					17	P/302/23(
10	"D-	ringinla of D. L		58628 IS						
19		rinciple of Exchange" lies								
	(1)	criminal, the victim an	d the obi	ects invo	lved in t	he crime				
	. (2)	criminal, the victim and the objects involved in the crime								
	(3)	an exchange of traces takes place between the crime spot and the criminel								
	(4)	no exchange of traces t and the victim	ake plac	e betwee	n the cr	ime spot				
	12000000	520 200-200 - 200-200 - 200-200 - 200-200	11		2843	•				
20.	'En	tomology' is study of :			20					
	(1)	trees	(2)	bugs	*					
	(3)	fertilizers	(4)	animal	ē .					
21.	Mis ind	sappropriation, negligen ustrial road, train and ai	ces che	ating, bu	ilidging	collapose,				
	(1)	Non-forensic maintaine	nace div	ision	outlines .	. •				
	(2)	Forensic engineering di	vision			٠,				
	(3)	Non-forensic physical d	ivision	38 39	60	100				
	(4)	Forensic physics divisor	i		5					
22.	Poly	graph is a:		Si.						
33	(1)	a pictorial information o	fhuman							
	(2)	a non-pictorial informat	on of his	man	35					
	(3)	a brain mapping		riicii						
		a lie-detectors	3.00	1						
23.	DNA cam	is found an everybody. What is found an everybody. What is a second to isolate it?	which of t	he follow	ing body	materials				

(2) Hair

Vicera

(4)

(1) Semen

(3) bone

24. Abraision means:

- (1) loss and damages of deep layer of body wound
- (2) loss and damages of middle layer of body wound
- (3) loss and damages of deep epithelial layer of skin
- (4) loss and damages of superficial epithetial layer of skin

25. Black powder is a mixture of:

- potassium nitrate, sulphur and charcoal
- (2) potassium citrate, sulphure and charcoal
- (3) potassium bromate, sulphuric acid and graphite
- (4) potassium chloride, hydrochloric acid and graphite

26. CD-RW is:

- (1) A compact disc to which data can not be written and stored
- (2) A compact disc to which data can be written and erased
- (3) A compact disc to which data can be recorded and stored
- (4) A compact disc to which data cannot be transferred

27. 'Dactyloscopy' is a science:

- (1) Dealing with fingerprint
- (3) Dealing with footprint
- (2) Dealing with DNA
- (4) Dealing with documents

28. Decibel is the unit of:

- (1) Speed of light
- (3) Intensity of sound
- (2) Radio wave frequency
- (4) Intensity of heat

29. Fanthom is the unit of:

- (1) Sound
- (3) Frequency

- (2) Depth
- (4) Distance

30.	Which prefix is often used with scientific terms to indicate that something is the same, equal or constant?							
	(1)	Iso	(2)	Mega				
	(3)	Meta	(4)	Quasi				
31.	The	study of phenomenon a	t a very	low temperature is called :				
	(1)	Heat transfer	(2)	Morphology				
	(3)	Crystallography	(4)	Cryogenics				
32.		at percent of fire-related ner than burns?	deaths	are due to smokeinhalation				
	(1)	10%	(2)	50% ·				
	(3)	80%	. (4)	99%				
33.	Poll	ination by birds is called	:					
10	(1)	Autogamy	(2)	Orthinophilly				
	(3)	Entemophilly	8.5	Anemophilly				
34.	The	per capita birth rate of a	ı popula	tion is known as its :				
	(1)	Mortality	(2)	Natality				
	(3)	Population density	. (4)	Carrying capacity				
35.	Wh	ich of the following is	prima	rily composed of calcium				
	(1)	Fish scales	(2)	Shark teeth				
	(3)	Oystershells	(4)	Whale bones				
36.	rate	ter flows through a horize. At a location where the city of the fluid:	ontal pi	pe at a constant volumetric ectional area decreases, the				
	(1)	Increases	(2)	Decreases				
	(3)	Stays the sume	(4)	Reduces to half				

37.	The is:	most serious environmental	poll	ution from a nuclear reactor
82	(1)	Radioactivity	(2)	Particulate formulation
	(3)	Thermal pollution	(4)	Noise pollution
38.		process by which a subs		
	(1)	Efflorescence	(2)	Deliquescence
	(3)	Dehydrogenation	(4)	Desalination
39.	A te	mperature of 295 K is equiv	alent	to approximately :
	(1)	0 degrees Fahrenheit	(2)	32 degrees Fahrenheit
	(3)	72 degrees Fahrenheit	(4)	97 degrees Fahrenheit
40.	The	statve of Liberty is green be	caus	e of ;
	(1)	Green stone	(2)	Oxidised brass
	(3)	Steel painted green	(4)	Oxidised copper
41.	One	metal dissolved in another	is ca	lled:
	(1)	an alloy	(2)	an assay
	(3)	a mineral	(4)	a ceramic
42.	Wh	ich of the following contains	carbo	ohydrates the most?
	(1)	Barley	(2)	Maize
	(3)	Wheat	(4)	Rice
43.	Alce	oholic fermentation is charac	cteris	tic of:
	(1)	Virus	(2)	Algae
	(3)	Yeasts ,	(4)	Bacteria

44.		ich of the following tosynthesis?	substa	ince is produced during
	(1)	Fat 1	(2)	Carbohydrate
	(3)	Amino Acid	(4)	Protein
45.	Two	[18] [18] [18] [18] [18] [18] [18] [18]	ame wei	qht in water must have the
	(1).	Weight in air	(2)	Weight in water
	(3)	Density	(4)	Volume
46.	Def	iciency of which vitamin	affects th	he ability to see in dim light?
	(1)	A '	(2)	C
	(3)	D	(4)	B ₁₂ .
47.	Wh	ich of the following is a c	ontagiou	is disease ?
	(1)	Small Pox		
	(3)	Cholera	(4)	Beri-Beri
48.	The	substance that hardens	when m	nixed with water is:
	(1)	Red "Lead	200	Gypsum Salt
	(3)	Epson Salt		Plaster of Paris
49.	The	heart of human-being :	10	V 95
	THE RESERVE OF	Rests while you sleep		
	(2)	Never Rests	58 33	
	(3)	Rests between beats		
	(4)	Rests during period of a	tress	B
50,	Whe	en a soap film on water is urs. This phenomenon i	seen in	day time, it shows beautiful
	(1)	Diffraction	(2)	Refraction
	(3)	Polarisation .	(4)	Interference
	S 10		(')	

51.	By f	By fixation of nitrogen is meant :						
	(1)	Manufacture of nitrogen						
	(2) Liquefaction of nitrogen							
	(3)	Conversion of nitrogen into	nitri	ic acid 📊				
	(4)			ogen into useful compounds				
52.	Ator	ms of the same element i.e. t differs in atomic weight, are	havii e call	ng the same atomic number ed :				
	(1)	Isotopes	(2)	Isomers				
	(3)	Isobars	(4)	Isohytes				
53.	Jou	le is the unit of :		6				
	(1)	Temperature	(2)	Energy				
	(3)	Heat .	(4)	Pressure				
54.	Hov	v many Dynes are there in o	ne gr	am weight?				
	(1)	아이지 않아지 않아 됐다면 그리고 그리고 아프라이트 아이들이 하면 하면 되었다면 그리는 옷 맞은 그리고 있었다.	(3)					
55.	Whi	ich substance is mixed to st	iffer 1	rubber?				
	(1)	Sulphur	(2)	Iron				
	(3)		(4)	Magnesium				
56.	Twi	nkling of stars is due to the e	ffect	of:				
	(1)	Refraction of light	(2)	Reflection of atmosphere				
	(3)	(1) : [10] [10] [10] [10] [10] [10] [10] [10]	(4)	Total Internal Reflection				
57.	Wh	ich type of mirror is used wh	ile sl	having?				
	(1)	Concave mirror	(2)	Convex murror				
	(3)	Plane mirror	(4)	No specific mirror				
58.	The	process of formation of var	oour	from solid camphor is called				
		:						
	(1)	Freezing	(2)	Evaporation				
	(3)	Sublimation	(4)	Condensation				

- 59. Atomes are composed of:
 - (1) electrons and protons
- (2) electrons only

(3) protons only

- (4) eletrons and nuclei
- 60. Epoxy resins are used as:
 - (1) detergents

(2) insecticides

(3) adhesives

- (4) moth repellents
- 61. Find the numbers of triangles in the given figure:

- (1) 8
- (2) 10
- (3) 12
- (4) 14
- 62. Look at this series: 7, 10, 8, 11, 9, 12, what number should come next?
 - (1) 7
- (2) 10
- (3) 12
- (4) 15
- 63. Father is aged three times more than his son Ronit. After 8 years, he would be two and a half times of Ronit's age. After further 8 years, how many times would he be of Ranit's age?
 - (1) 2 times

(2) $2\frac{1}{2}$ times

(3) $2\frac{3}{4}$ times

(4) 3 times

64. Chose the figure which is different from the result:

65. Select a suitable figures from the Answer figure, that would replace the question mark:

66. Based on the following statements, which is the Correct conclusion drawn?

Only gentlemen can become members of the club are officers, Some of the officers have been invited for dinner:

- (1) All the members of the club have been invited for dinner
- (2) Some of the officers are not gentlemen
- (3) All gentlemen are members of the club
- (4) Only gentlemen have been invited for dinner
- 67. If A is soln of Q, Q and Y are sisters, Z is the mother of Y, P is the son of Z, then which of the following statements is correct?
 - (1) P is the maternal uncle of A
 - (2) P and Y are sisters.
 - (3) A and P are cousins
 - (4) None of the above

68.	3. Marathon is to race as hibernation is to:								
	(1)	Winter	(2)	Bear	(3)	Dream	(4) Sleep	
69.		rain runnir onds. What					crosses	a pole in	9
	(1)	120 metro	8	*	(2)	180 me	tres		
	(3)	324 metre	8:		(4)	150 me	tres	90	
70.	the	this series, number pa D, TEF, UGI	ittern.	Fill in bla	ank in	the midd			ıd
	(1)	CMN		UJI	100 140	VIJ	(4)	IJT .	
71.	stre	ed of the bo am and con ne speed of	me ba	ck to the s	startin	g point ir	goes 12	2 Km. dow	n at
	(1)	3.5 Km./h		.55		3 Km./h	ır.	55	
	(3)	5 Km./hr.			(4)	5.5 Km.	/hr.		
72.	ıma	ose the alt ge of the gives 343Q12	ernati ven co	ive which mbination	is clo	sely rese	m bles	the mirro	r
	(a)	210348NA			(b)	ANS43Q12	i.		
	(b)	12Q43ANS			(d)	SNA34021	.		
•	(1)	а	(2)	ib .	(3)	c	(4)	d	
73.	Yaro	l is to inch	as qua	art is to :		-			
	(1)	Gallon	(2)	Ounce	(3)	Milk	(4)	Liquid	
		ů.	8.3	arguer .					

74.	Each problem consists of three statements. Based on the first two statements, the third statement may be true, false or uncertain:							
	(a)	Tanya is old	er th	an Eric				
	(b)	Cliff is older	thar	Tanya 🕆		. 1		
	(c)	Eric is older						
		If first two s	taten	nents are tr	rue, t	he third stat	emer	nt is:
	(1)	True			(2)	False		
	(3)	Uncertain			(4)	Can't say		
75.	Cho EN	ose the word	l whí	ch is the ex	cact (OPPOSITE of	the i	given word
		Soft	(2)	Average	(3)	Tiny	(4)	Weak
76.	Thre	ee times the n twice the th	first nird.	of three co The third i	nsec ntege	utive odd int r is :		
	(1)		(2)		(3)	13	(4)	15
77.	If or	ne-third of or t number is :	ne-fo	urth of a n	umb	er is 15, the	n thr	ee-tenth of
		35	(2)	36 ୍	(3)	45	(4)	54
78.	A ri	ght triangle n to form a c	with one.	sides 3cm, The volume	4cm	& 5cm is ro he cone so fo	tated orme	the side of d is :
	(1)	12 π cm ³			(2)	$15\pi \text{cm}^3$		
	(3)	16π cm ³			(4)	$20\pi \text{cm}^3$		
79.	A cl	lock is starte turned thro	d at	noon. By 1	0 mi	nutes past 5	, the	hour hand
		145°		150°	(3)	155°	(4)	160°
80.	diff but		fary Is. Journal with esday luled work	ohnson wa Mr. Carter Ms. Falk	s sch , who trac	neduled to we was original led with Mr. rsday. After Ms. Falk	ork o	n Monday, heduled to
			Ç.					

SECTION - B

(BIOLOGY)

81.	Di	atoms belongs to the grou	p:	¥:
	(1)		(2)	Fungi
	(3)	Lichens	(4)	and the second s
82.	W	nich of the following plant	causes	allergy and hav fever :
	(1)	Argemone mexicama		Panthenium hysterophones
*	(3)			Nerium indicum
83.	Ca	runcle is found in the see	ds of :	
	(1)	Nerium	(2)	Dhatura
	(3)	Ricinus	(4)	Litchi
84.	Res	serpene drug is extracted	from ·	×
	(1)		(2)	Ricinus Communis
	(3)	Rauvoffia Serpentina	(4)	Tagetes erecta
85.	Wh	ich of the following drug	s used	for treatment of Pulmonary
		Nicotine	(2)	Abrin
	(3)	Ricin	(4).	Ephedrine ·
86.	Vel	men is found in the roots	of.	
	(1)	Mangroves	(2)	Orchids
	(3)	Cuscutti	(4)	Cycas
87.	Peri	sperm in seeds develop fr	 2	
	(1)	Nucellus		
	(3)	Hilum		Punicle
	(0)	·	(4)	Ovary wall

88.	Trangenic golden rice is enriched with:								
	(1)	Glutenin							
	(2)	Methionine		M					
	(3)	Vitamin A							
	(4)	All the essential amino acid	S						
89.	Prin	nary Precersor of I.A.A. is:							
	(1)	Leucine	(2)						
	(3)	Methionine '	(4)	Aspartic acid					
90.	Circ	inotropouds ovale is found i	n:						
	(1)	Opuntia	(2)	Raphanus .					
	(3)	Crotalaria	(4)	Polygonum					
91.	Fine	d the false statement with re	gard	s to Asteraceas :					
8	(1)	Epigynous Flower	(2)	Syngenesious authers					
		Cypsella fruits	(4)	Axile placentation					
92.	Coi	r is obtained from :		8					
	(1)	Cocos nucifera	(2)	Crotalaria juncea					
	(3)	Gossypium arboreum	(4)	Agave americana					
93	. Wh	ich ecological pyramid is alw	vays	upright:					
	(1)								
	(2)	Pyramid of biomass		58					
	(3)	Pyramid of energy		2.00					
22	(4)	- 1 -6-mmber and DV	ram	id of biomass					
04	ип	nich of the following enzyme	s is a	ctive above 90°C?					
94		A STO Completed	(2)	Taq Polymerase					
	(1) (3)	Peroxidase	(4)	Lipase					

95.	Inc	Incomplete dominance is found in:									
	(1)	Solanum		(2)	Mirabilis						
	(3)	<i>Iberis</i>		(4)	Pisum						
96.	Tot	al numbr of ho	t spots of bio	diver	sity in India is :						
	(1)			1000000	Four						
•	(3)	Five	*	, (4)	Ten						
97.	First transgenic crop was :										
	(1)	Tobacco		(2)	Brinjal						
	(3)	Rice	4	(4)	Pea						
98.	Cap	osule of fern Ep	orangium bu	ırst ai	t:						
	(1)	Annulus	0	(2)	Stomium						
	(3)	Placenta		(4)	Romenta						
99,	Insectivorous plants grow in the soil deficient in :										
	(1)	Magnesium	1.00 1.00	(2)	Calcium						
•	(3)	Water	D2	(4)	Nitrogen						
100	Mol	lecular scissor	used in gene	tic en	gineering is :						
	(1)	Ligase		(2)	Restriction endonucleus						
	(3)	Catalase	3 33	(4)	Peroxidase						
101	Lab	yrinthiform org	ans are foun	d in :	300 °						
	(1)				espiratyory organs						
	(2)	Clarias and he			7 J J B						
	(3)	Sharks and for									
	(4)	Labeo rohita a			receptors						

102.In a shark fish, epibranchial arteries:

()		carry deoxygenated blood and supply it to gills										
(3		carry deoxygenated blood and supply it to dorsal aorta										
(;	3)	carry oxygenated blood and supply it to gills										
	4)	carry oxygenated blood and supply it to dorsal aorta										
103 .I	Delte	oid ridge and	acro	nion pro	cess a	re present	in:					
		Femur and Pectoral girdle										
. ((2)	. 11										
(1 .1 .11										
30		Femur and H										
104.	Ante	erior choroid	plexu	s of brain	n:							
	(1)	Secretes cer				20						
		Controls mo										
	(3)	Regulates sa			he boo	dy						
	(4)	Coordinates)(
	enla infra	ich of the fo arged scales a-labial scale Cobra	on tr	g snake ne middl Krait	e or c	oossess br ack and v Viper	rciy lai	rge fourth Rat snake				
106	Del	icate hair like	feath	ners havi al barbs	ng sho are kr	ort calamus nown as :	s, long t	hread like				
	(1)	Down feathe			(2)		eathers	3				
	(3)	Powder dow		hers	(4)	Filoplume	feathe	rs				
107		gan of Jacobs			n aduli	t:						
107.		Columba	011 15		(2)	Sphenodo	on					
	(1)	Naja			(4)	Hemidact						
	(3)	пиди			()	. 77.22.20.11						
108	.Ani	imal that sho	ws Ur	iguligrad	le loco	motion is :						
	(1)	¥.	(2)	Dog	(3)	Deer	(4)	Primates				

109,	Pa	rental care in <i>Alytes</i> is :									
	(1)	Shown by male that ties	eggs o	n its back							
	(2)	Shown by female by keeping eggs in the mouth									
	(3)	Shown by both sexes by pouch	keep	ing eggs in abdominal brood							
	(4)	Both parents gaurd eggs	one at	fter the other							
110.	Wh	ich of the following animal	s show	vs biradial symmetry ?							
1	(1)	Volvox	(2)	~ ~ # # # # # # # # # # # # # # # # # #							
. 1	(3)	Hydra	(4)	Sycon							
111.	Wh	ich one of the following at m'?	nimal i	s commonly called as 'hook-							
. ((1)	Ascaris lumbricoides	(2)	Enterobius vermiularis							
((3)	Trichuris trichura	. (4)								
112.	Wh	ich class of mollusca has c	losed	circulatory system 2							
(1)	Pelecypoda	(2)								
(3)	Gastropoda	(4)	Cephalopeda							
113.F	lar	nula is a larval form of :									
102	1)	Prtezoans	(2)	Cindarians							
(3)	Molluscans	(4)	Nematodes							
114.E	xc	retory organ of Limulus is	•	32							
(1)	Malpighian tubules	(2)	Nephridia							
(3)	Coxal glands	(4)	Green glands							
115.P	Sei	idocoelom is :	Carlo								
100											
(2	2)	A body cavity lined with e	ndode:	(m.							
632	3)	A body cavity whose in-	med w	nth mesoderm							
,,	7	outer edge is lined by mes	r edge sodern	is lined by endoderm while							
14		Nan-Am-	77								

17P/302	2/23(1)		ř								
	ich of the following is not a m iropoda?	ajor	factor in the success of the								
·(1)	Highly developed sensory organs										
(2)	A chitinous exoskeleton										
(3)	Segmentation and appendages										
(4)	Open circulatory system	Open circulatory system									
117.An	nelids are also called as :		12 1								
(1)	Flatworms	(2)	Thread worms								
(3)	Bristle worms	(4)	Whipworms								
118.cl	B technique in <i>Drosophila</i> is u	sed	l to detect :								
(1)	autosomal recessive mutation	ons	¥								
(2)	autosomal dominant mutations										
(3)	sex linked recessive lethal r										
(4)	sex linked dominant lethal t										
wif	a couple, husband having a Te homozygous normal, seek fildren, what will be your advic	s ye e ou	ut of the following?								
(1)	The will have 50% chance o	f ha	aving the affected male child								
(2)	They can safely go for only	em:	ale child								
(3)	They can safely go for only	mal	e child								
(4)		ve a	Chila								
120.Se	gregation of alleles usually to	akes	s place at which phase of cell								
	vision ? First anaphase of meiosis	(2)	Anaphase of mitosis								
(1	Lugi direchassos	14	Diplotene								

(3) Pachytene

(4) Diplotene

SECTION - B (CHEMISTRY)

121. Compound A and B are:

(1) Enantiomers

- (2) Epimers
- (3) Diastercomers
- (4) Identical

122. The IUPAC name of the compond given below is:

- (1) Bicyclo [2,2,0] octa -2,6-diene
- (2) Bicycle [1,1,1] octanone
- (3) Bicyclo [2,2,2] octa -2,5-dione
- (4) Bicyclo [2,2,1] octa -2,5- dione

123.A suitable reagent combination for carrying out the following conversion is:

- (1) Triethyl orthoacetate and p- toluene sulfonic Acid
- (2) 2-methoxypropene and sodium hydroxide
- (3) Trimethylorthoacetate and sodium hydroxide
- (4) 2- methoxypropene and p-toluene sulfonic Acid

124. The major product (A) in the reaction given below, is:

$$CH_3 - CH_2 - CH - CH_3 \xrightarrow{Ag_2O} \underline{A} + N (CH_3)_3$$

$$\oplus N(CH_3)_3 I^{\Theta}$$

(1) 2- lodobutane

(2) 1- Butene

(3) cis-2-Butene

(4) trans -2- Butene

125. Benzene ring substituent is deactivating, but O/P - directing:

(1) - N = 0

(2) - OCH₃

(3) _ C - CH₃

(4) -NO₂

126. The major product obtained from the mono-bromination of Phenyl benzoate is:

127.In the given reaction,

the reaction sequence is:

- (1) Two times Aldol reaction followed by Cannizzaro reaction
- (2) Two times Aldol reaction followed by Cannizzaro reaction
- (3) Cannizzaro reaction followed by Aldol reaction
- (4) Simple consecutive Aldol reactions.

128. The two reactions involved in the Robinson Annulation is:

- (1) Michael reaction followed by Perkin reaction
- (2) Hydroboration reaction followed by oppenauer oxidlation
- (3) Diels-Alder reaction followed by Aldol reaction
- (4) Michael reaction followed by Aldol reaction

129. The reaction given below involved:

- (1) Benzyne mechanism
- (2) Addition-Elimination mechanism
- (3) Concerted Mechanism
- (4) Free radical mechanism

130. Which of the following compound have the greatest resonance energy:

131. How many grams per mililiter of Nacl are contained in a 0.250M solution?

(1) 0.143 g/ml

(2) 0.0146 g/ml

(3) 0.0014 g/ml

(4) 1.460 g/ml

132. The criteria for selection of a redox indicator is:

(1)
$$E < \frac{0.0591}{n}$$

(2)
$$E > \frac{0.0591}{n}$$

(3)
$$E = \frac{0.0591}{n}$$

(4)
$$E = \frac{n}{0.0591}$$

133. The salt of a weak acid is:

(1) Neutral

(2) Strong acid

(3) Strong base

(4) Weak base

134. Which of the following reagents is used for the estimation of selective C-C cleavage?

- (1) Karl-Fishcer reagent
- (2) Chloramine-T
- (3) Potassium Bromate
- (4) Periodic acid

135. The concentration of zinc ion is about 1ppm. This can be expressed as meq/L:

(1) 3.10×10^{-2}

(2) 3.20×10^{-2}

(3) 3.30×10^{-2}

 $(4) \cdot 3.06 \times 10^{-2}$

136.A 2.6g sample of plant tissue was analyzed and found to contain 3.6 µg zine. What is the concentration of zinc in the plant in ppb?

(1) 1400 ppb

(2) 1200 ppb

(3) 1300 ppb

(4) 1000ppb

137. The distribution ratio of weak acid in water is given by:

(1)
$$D = \frac{K_D}{\frac{K_D}{[H^*]} + 1}$$

(1)
$$D = \frac{K_D}{\frac{K_B}{[H^*]} + 1}$$
 (2) $D = \frac{K_A}{\frac{K_D}{[H^*]} + 1}$

(3)
$$D < \frac{K_0}{\frac{K_0}{[H^*]} + 1}$$
 (4) $D > \frac{K_0}{\frac{K_0}{[H^*]} + 1}$

$$(4) \quad \stackrel{\mathbf{D} \sim \frac{\mathbf{K}_{\mathbf{D}}}{\mathbf{K}_{\mathbf{B}}} + 1}{\underbrace{\mathbf{K}_{\mathbf{B}}}_{[\mathbf{H}^+]} + 1}$$

138. The Van Deemter Equation is:

(1) HETP = A +
$$\frac{B}{\overline{\mu}}$$
 + $C\overline{\mu}$

(2) HETP = B +
$$\frac{A}{\overline{\mu}}$$
 + $C\overline{\mu}$

(3)
$$\text{HETP} = C + \frac{A}{\overline{\mu}} + B\overline{\mu}$$
 (4) $\text{HETP} = A + \frac{C}{\overline{\mu}} + B\overline{\mu}$

(4) **HETP** = A +
$$\frac{C}{\overline{\mu}}$$
 + B $\overline{\mu}$

139. The relation between A and T is:

(1)
$$A = \log \frac{1}{T}$$

(2)
$$A = \log T$$

(3)
$$A = \log\% T$$

(4)
$$A = log 10 T$$

140. The Ksp of Agcl is 1.0×10^{-10} . The concentrations of Ag+ is:

(1)
$$1.0 \times 10^{-10}$$

(2)
$$1.0 \times 10^{-5}$$

(4)
$$1.0 \times 10^{-3}$$

141. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is:

- (1) critical temperature
- (2) boyle's temperature
- (3) inversion temperature
- (4) reduced temperature

142. The rise of liquid in a capillary is due to:

(1) viscosity

- (2) osmosis
- (3) surface tension
- diffusion (4)

143. For coagulating Sb₂S₃ colloidal sol, which one of the following will have the lowest coagulation value?

(1) AlCl,

(2) BaCl,

(3) KCl

(4) NaCl

144. For	the reaction	2NO	(g) + Cl ₂ (g)	← →2N	iOCl(g)	141		
(1)	$k_p = k_c \times RT$			(2)	$k_p = k_c/RT$	50		
	$k_p = k_c \times (RT)$)2	\$2		$k_p = k_c/(RT)^2$			
145.In a	three comp dom can be	onen :	t system th	ie ma	aximum num	ber of degree of		
(1)	4	(2)	3	(3)	2	(4) 1		
	e rate equatio oxide in acid			tion	of bromide io	ns by hydrogen		
2B)	+ H ₂ O ₂ + 2H	I* →	Br ₂ + 2 H ₂ (r ai C	v = k [H ₂ O ₂] [H	I*] [Br-]		
If the	ne concentra tor the rate o	tion of	of H_2O_2 is in sumption (ncrea of Br	ased by a fact ions will be	or of 3, by what increased :		
(1)	unaffected			(2) (4)	2			
(3)	3	3		(4)	4	(i)		
ml 0.5	of CCI4. If the	equi	ilibrium an	noun	t of X in the a	l of water and 5 aqueous layer is er and aqueous		
(1)	50	(2)	60	(3)	30	(4) .40		
148. The isotope ***Po undergoes one alpha and one beta particle emission sequentially to form an isotope X. The number of neutrons in X would be:								
(1)	82	(2)	83	(3)	127	(4). 210		

149. Which of the following statements is not true for chemisorption?											
	(1)	Its magnitude increases with temperature									
	(2)	Very high order of heat is evolved in it									
	(3)	It is an irreversible process									
	(4)	It involves multi-molecular layer									
150. Which of the following crystals willhave the highest cohesive energy (or binding energy)?											
		NaCl (2) CsCl									
	95.53	MgCl,	(4)	CaO							
	(-)	3.75 C.2	(1)	Cao							
151. The name of Alfred Werner is associated with:											
	(1)	supramolecular chemistry	(2)	coordination chemistry							
	(3)	heterocyclic chemistry	(4)								
152	.Wh	ich of the following is a set o	f line	ar molecules/ions?							
	(1)	CO ₂ , NCS and NO ₂	(2)	CO2, NCS and NO2							
	(3)	NO ₂ , N ₃ and NCS	(4)	ClO ₂ , CO ₂ and NO ₂ +							
153	.Two	isomers are known for Pt actures are consistent with t	NH ₃) his of	Cl ₂ . Which of the following oservation?							
	(i)	tetrahedral									
	(ii)	planar									
	(iii)	trigonal pyramidal									
	(1)	only (i)	(2).	only (ii)							
	(3)	(i) and (ii)	(4)	(ii) and (iii)							
73		*		8							
154	154. Consider the reaction in which a strong base M(OH) ₃ is neutralized by a strong acid H ₂ X. What volume of 2 M base will be equivalent to 1 L of 3M acid?										
	(1)	1L (2) 1.5 L	(3)	2 L (4) 0.7 L							
	7-7	199		3 8							

155. C	om	plete the se	nten	ce : An c	cta	hedr	al co	mplex,	MA ₄ E	\$ ₂	
(1	L)	will have two	o con	stitutio	nal	ison	ers	705			
(2	2)	will have tw	o ste	reoisom	ers	3	[.		<u>00</u>		2 8 2
(3	3)	can not sho	w iso	merism	L.	ii .	:-			£	
(4	1)	will be optic	ally e	active			63				
		at is the coo							ı situa	ated	at the
C	ent	er of a squar	e an	tiprism	of 1	igan	dator	ns?	8	2	
(1	1)	2	(2)	4	•	(3)	6	*	(4)	8	
		n ammoniu									
		er sulphate . The reaction								s a d	leeper
(2	1)	redox				(2)	rear	ranger	nent		
(3	3)	addition	5	A. 10		(4)	sub	stitutio	n		
158,F	low cid	may moles medium ?	of M	n ^{O₄} wil	l be	e equ	ivaler	nt to or	ne mol	e of	Fe²+ in
(1)	5 moles	104			(2)	1/5	moles			
C	3)	2 moles				(4)	1/2	moles			
159.4	l co	ordination o	Ağı. CERTOS	lev was	οħ	taine	d in t	he for	m of t	wo ie	nmere
b c	oth oul ons	of which ha d be isolate sistent with t (H ₃) ₄ Cl ₂ ;	ve oc d. W this c	tahedra hich ar bserva	d co mor tion	ording the Picture of	nation e foll	ı. No a owing	ddition form	nal is das	omers is(are)
(1)	only [Cr(H20	D) ₅ ,Cl	1							
G	2)	Cr(H ₂ O) ₃ Cl			NiC		į.		* 12	10	
(:	3).	Cr(H ₂ O) ₃ Cl						50			**
(*	4)	only Ni (NH					***				
*								í		8	
			1.2								

160. How many moles of iodine will be equivalent to one mole of hydrogen peroxide in a redox reaction?

(1) 1 mole

(2) 1/2 mole

(3) 2 mole

(4) 4 mole

SECTION - B (MATHEMATICS)

161. The last digit of 2199 is :

- (1) 2
- (2) 4
- (3) 6
- (4) 8

162. If the coefficient of x^7 and x^8 in $\left(2+\frac{x}{3}\right)^n$ are equal, then n is :

- (1) 15
- (2) .45
- (3) 55
- (4) 25

163. The value of 0 a b is b 0 a

(1) a^3

(2) b^3

(3) $a^3 - b^3$

(4) None of these

164. The value of the roots of determinant $\begin{vmatrix} 0 & x+1 & 2x-3 \\ 0 & 0 & x-1 \end{vmatrix} = 0$ are

- (1) Real and distinct
- (2) Irrational

(3) Imaginary

(4) Coincident

165. The matrix $\begin{bmatrix} 1 & 1 & -3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ is

- (1) Idempotent
- (2) Not nilpotent
- (3) Nilpotent of order 2
- (4) Nilpotent of order 3

166. If A is a 3×3 matrix with rank 2 and B is a 3×3 matrix with rank 3, then:

(1) ρ (AB) ≤ 1

 ρ (AB) ≤ 2

(3) ρ (AB) = 3

(4) ρ (AB) = 6

167. If the roots of x^2 - bx + c = 0 are two consecutive integers, then b2 - 4c is:

(1) (0

(2)

(3) 1

(4) none of these

168. If a + b + c = 0, then the quadratic equation $3ax^2 + 2bx + c = 0$ has

- (1) Imaginary roots
- (2) at least one root in [0,1]
- (3) one root in [2,3] and other in [-2,-1]
- (4) None of these

169. For what values of k, the following equations are inconsistent?

$$3x + 2y - 5x = 3$$

$$5x - 4y - z = 5$$

$$2x - 6y + kz = 9$$

(1) 0

(2) 10

(3) 4

(4) none of these

170. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ is:

- (1) $4x + y + 1 = \tan(2x + c)$
- (2) $4x + y + 1 = 2\tan(2x + c)$
- (3) $2(4x + y + 1) = \tan(2x + c)$ (4) $\tan(4x + y + 1) = 2x + c$

171. Given that $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$. Which one of the following is always true?

(1)
$$\frac{d^2y}{dx^2} \cdot \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2 \frac{d^2x}{dy^2} = 0$$
 (2) $\frac{d^2y}{dx^2} \frac{dx}{dy} + \left(\frac{dy}{dx}\right)^2 \frac{d^2x}{dy^2} = 0$

(2)
$$\frac{d^2y}{dx^2}\frac{dx}{dy} + \left(\frac{dy}{dx}\right)^2 \frac{d^2x}{dy^2} = 0$$

(3)
$$\frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^3 + \frac{dy}{dx}\frac{d^2x}{dy^2} = 0$$
 (4) $\frac{d^2y}{dx^2}\frac{dx}{dy} + \frac{dy}{dx}\frac{d^2x}{dy^2} = 0$

(4)
$$\frac{d^2y}{dx^2}\frac{dx}{dy} + \frac{dy}{dx}\frac{d^2x}{dy^2} = 0$$

172. The differential equation $(2x^2 + by^2) dx + cxydy = 0$ is made exact by multiplying the integrating factor $1/x^2$. Then:

(1)
$$2c = b$$

(2)
$$c = b$$

(3)
$$2b + c = 0$$

(4)
$$2c + b = 0$$

173. The boundary value problem $\frac{d^2y}{dx^2} + y = 0$, $x \in [0,\pi]$, y(0) = 0, y(n) = 0 has:

- (1) Unique solution
- (2) Infinitely many solutions
- (3) No solution
- (4) Finitely many solutions

174.A differential equation $\frac{dy}{dx} = y \tan x - 2 \sin x$ has an integrating factor:

(1) cos x

(4) e cosx dx

175. The integrating factor of the differential equation $(x^2 + y^2 + 2x) dx +$ 2ydy = 0 is:

- (1) ex-

176. The particular integral of $(D^2 - 2D)y = e^x \sin x$ is :

(1) $-\frac{1}{2}e^x \sin x$

(2) ex cos y

(3) $-\frac{1}{2}e^{x}\cos y$

(4) none of these

177. $\int_0^\infty \frac{\sin t}{t} dt$ equals to:

(1) 0

(2)Π

(3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

178. The inverse laplace transform of $\frac{1}{s^2(s^2+1)}$ is:

(1) t + sin t

(2) 1 - sin t (3) $t - \sin t$

(4) t + cot t

179. If the laplace transform of y(t) is y(s), then application of laplace transform in initial value problem y + 9y = 6cos 3t, y (0) = 2, y'(0) = 0 gives that:

(1) $y(s) = \frac{2s^3 + 24s}{(s^2 + 9)^2}$ (2) $y(s) = \frac{5s^3 + 12s}{(s^2 + 9)}$

(3) $y(s) = \frac{s^2 + 18s}{(s^2 + 9)^2}$

(4) none of these

180. The inverse laplace transform of $\frac{s+1}{s^2+6s+75}$ is:

(1) $e^{-3t} (\cos 4t - \frac{1}{2} \cos 4t)$ (2) $e^{-3t} (\sin 4t - \frac{1}{2} \cos 4t)$

(3) $e^{-3t} (\cos 4t - \frac{1}{2} \sin 4t)$

(4) none of these

- **181.** The integral equation $y(x) = \int_0^x (x-t) \dot{y}(t) dt x \int_0^1 (1-t) \dot{y}(t) dt$ is equivalent to:
 - (1) $y^{11} y = 0$, y(0) = 0, y(1) = 0
 - (2) $y^{\dagger \dagger} y \approx 0$, y(0) = 0, y'(0) = 0
 - (3) $y^{11} + y = 0$, y(1) = 0, y(1) = 0
 - (4) $y^{11} + y = 0$, y(0) = 0, y'(0) = 0
- **182.** The solution of the integral equation $g(s) = s + \int_0^1 su^2 g(u) du$ is:

 - (1) $g(t) = \frac{3t}{4}$ (2) $g(t) = \frac{4t}{3}$ (3) $g(t) = \frac{2t}{3}$ (4) $g(t) = \frac{3t}{2}$
- 183. Convert the following differential equation into an integral equation:

$$y'' + \lambda xy + f(x), y(0) = 1, y'(0) = 0$$
:

- (1) $y(x) = 1 + \int_0^x (x t) [f(t) \lambda ty(t)] dt$
- (2) $y(x) = 1 + \int_0^x (x t) [2f(t) \lambda t^2 y(t)] dt$
- (3) $y(x) = 1 \int_{0}^{1} (x t) [f(t) \lambda ty(t)] dt$
- (4) none of these
- 184. The laplace transform of $\frac{\sin at}{t}$ is:
 - (1) $\cot^{-1} \frac{2as}{s^2 + a^2}$

(2) cot a

(3) $\tan^{-1}\frac{s}{a}$

(4) tan 2as

185. The	number of g	ener	ators of a c	yclic	group of ord	er 12	are:			
(1)	2	(2)	6	(3)	12	(4)	4			
186. The	number of 5	-sylc	w subgrou	ps of	Z ₂₀ is:					
(1)	1	(2)	4	(3)	5	(4)	6			
187. Which of the following cannot be the cardinality of a field?										
(1)		(2)		(3)		(4)				
188. What is the dimension of a vector subspace W of a vector space $\mathbb{R}^3(\mathbb{R})$, where W = {(a, b, c) : a + b = c}										
(1)	1			(2)	2					
(3)	3			(4)	none of thes	e				
189.Dim	ension of a v	recto	r space \mathbb{C}^3	R) is	:					
(1)	3		,	(2)		- 1				
(3)	9	4		(4)	none of the	se				
190.Wh	ich of the foll	owin	g is not a li	near	transformati	on?				
(1) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (x, z)$										
(2)	$T: \mathbb{R}^3 \to \mathbb{R}^3 d$	efine	d by T(x,y,z)	= (x, 3	7 −1 ,z)					
135	$T: \mathbb{R}^2 \to \mathbb{R}^2 d$									
(4)	$T: \mathbb{R}^2 \to \mathbb{R}^2 d$	efine	d by $T(x,y) =$	(y – x)						
191.Nev	vton's iterati	ve for	rmula to fir	ıd √ĭ	ij is:					
(1)	$\mathbf{x}_{n+1} = \mathbf{x}_n (2 -$	- Nx _r)		$x_{n+1} = x_n (2 +$	· Nx	,)			
(3)	$\mathbf{x}_{n+1} = 2 \left(\mathbf{x}_{n} \right)$	$+\frac{N}{x_n}$) .	(4)	none of the	se				
	e number i ⁱ is				12 g		liji			
(1)		5 04-		(2)	1					
(3)	$\frac{\pi}{2}$			(4)	none of the	se				
			38	3						

193. The complex number $\frac{1+2i}{1-2i}$ lies in the:

(1) I quadrant

- (2) II quadrant
- (3) III quadrant
- (4) IV quadrant

194.Let $A = \begin{bmatrix} 0 & \omega \\ \omega & 0 \end{bmatrix}$, where ω is a complex cube root of unity. Then A^{24} is:

(1) A^2

- (3) Zero matrix
- (2) A (4) Identity matrix

195. The sum of the infinite series $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \frac{8}{9!} + \dots + \infty$ is:

- (1) e (2) 2e (3) $\frac{1}{e}$ (4) $\frac{3e}{2}$

196. If $\frac{1}{\log x} + \frac{1}{\log x} = \frac{2}{\log x}$, then a, b, c are in :

- (1) H.P.

- (2) A.P. (3) G.P. (4) None of these

197. If f is twice differentiable function such that f''(x) = -f(x), f(x) = g(x)and h (x) = $[f(x)]^2 + [g(x)]^2$. If h(5) = 11 then h (10) is equal to:

(1) 22

(3) 121

(2) 16 (4) none of these

198. The sum of the series: $1 + \frac{2}{1.2.3} + \frac{2}{2.3.4} + \frac{2}{3.4.5} + \frac{3e}{2} + \dots$ is:

(1) 2

(3) log 2

(2) 3/2 . (4) log 2 - 1/2

199.If f(x) is differentiable in [a, a + h], there exists at least one real number θ such that:

$$f(a + h) - f(a) = h f'(a + eh).$$

Then θ has the value:

(1) $\theta = 1$

(2) $\theta = 0$

(3) less than θ

(4) none of these

200. The asymptote of the curve $r_{\theta} = a$ is:

(1) $r \sin \theta = a$

(2) $r = a \sin \theta$

(3) $r = a \cos \theta$

(4) $r \cos \theta = a$

SECTION - B (PHYSICS)

201.If the kinetic	energy	of a fr	ee electr	on doub	les, its de Brog	glie
wavelength ch	anges	by the fa	actor:	1	SSS CONTRACTOR OF THE CONTRACT	
			(0)	-	(4) 1/5	

- (1) 2
- (2) 1/2
- (3) √2

202. If the critical angle for total internal reflection from a medium to 0. Then velocity of light in the medium is:

- (1) $1.5 \times 10^8 \,\mathrm{m/s}$
- (2) 2.5 × 108 m/s
- (3) 3.8 × 108 m/s

(4) $5.5 \times 10^8 \,\mathrm{m/s}$

203.An ideal black body is represented by:

- (1) A metal coated with a black dye
- (2) A glass surface coated with coaltar
- (3) A hollow enclosure blackened from inside and having a small hole .
- (4) A fump of charcoal heated to a high temperature

204.Out of the following, which one is not an example of capillary action?

- (1) Ploughing of the field
- (2) Absorption of ink in a blotting paper
- (3) floating of wood on the surface of water
- (4) Rise of oil in the wick of a lamp

205.At what temperature, the rms speed of gas molecules is half the value at NTP?

- (1) 68.25 K
- (2) 273 K
- OK

	(1)	Wavelength of sound only								
	(2)) Density and elasticity of gas								
	(3)	Intensity of sound waves only								
*	(4)	Amplitued and frequency of	f sou	ınd						
207	rad	e escape velocity for a body of the earth is increased ald be :	on th 4 tin	ne earth is 11.2 km/s. If the nes, then the escape velocity						
	(1)	44.8 km/s	(2)	33.8 km/s						
ŝ	(3)	25.7 km/s	(4)	22.4 km/s						
208		Q is the amount of heat sup in in isothermal process:	plie	d and dW is the work done,						
	(1)	dQ + dW = 0	(2)	dQ - dW = 0						
	(3)	dW/dQ = 0	(4)	none of the above						
209	.A ca	apacitor has a capacitive rea 100 v, 25 Hz supply. The va	ctan	ce of 400 Ω when connected of capacitance is :						
		15.92 µF		57.34 μF						
	(3)	92.04 μF	(4)	23.12 µF						
210	In a of :	gas the transport of moment	um į	gives rise to the phenomenon						
	(1)	Viscosity	(2)	Conduction						
	(3)	Diffusion	(4)	Volume						
211	.A d	ecrease in the Helmholtz fur	etio	n of a system is equal to:						
		Change in temperature	(2)							
	(3)	Change in internal energy	(4)	All of the above						
212	The for t	maximum distance up to wi the oscillation to remain har	nich moni	a spring fo force constant k. the body can be pulled down ic is :						
	(1)	2 mg/k (2) mg/k	(3)	2k/mg (4) k/mg						
		. 42		25						

206. The velocity of sound in any gas depends upon :

213.A pt	rocess 'A' is	irrever	sible and	adiab	atic. Proces	s B'is	reversible
and	adiabatic. respectively	The er	itropy ch	ange 1	n process	A anu	process
(1)			•	(2)	Zero and 1	negativ	e
		Negative and zero			Positive ar	nd zero)
214 In t	erms of ma	onetic	propertie	s. Oxy	gen belong	s to ?	
	Magnetic r			100		aetic n	aterials
.(3)	Paramagn			(4)			
the circ	current at applied vol uit capacit 63.3 µH	tage is ance is	250 mV 10.04μF,	at a II the va	equency of lue of circu	it indu	ux and mic
216.Fer	a given m	aterial	, the You	ng's r	nodulus is		nes that of
577	2.4		1.2		0.4	(4)	0.2
217.Wh	ich one of t	he folk	owing phe	enome	non shows	partic	le nature of
(1)	Polarizatio	on		(2)	Photoelec	tric eff	ect
	Interferen			(4)	Refraction	1	
ms the ten	e temperat ximum in i e spectrum aperature o	s radi of a st f the s	ation spec ar is max tar is :	etrum imum	at 1200 A°. at 4800 A°.	If the then	intensity in the surface
(1)	650 °K	(2)	600 °K	(3)	480 °K	(4)	, 750 °K
219.St	ars appear t	o mov	e from ea	st to v	vest becaus	e:	20
. (1)			0.40				
(2)	The earth	rotate	s from w	est to	east		
(3)						22	
(4)	:				oves from v	vest to	east
•			9 19		9	5.4	
		32	4	3			P.T.O.

220	The	impurity wi	th wi lucto	nich pure s r is :	llicor	should be do	ped	to make a		
	(1)	Phosphorus	S		(2)	Boron				
	(3)	Antimony			(4)	Arsenic				
221	.Ligh	nt Emitting D	iode	(LED) conve	erts:					
	(1)	Light energy into electrical energy								
	(2)		Electrical energy into light energy							
	(3)	Thermal en		3.76		Q				
	(4)	Mechanical					•	٧		
222	.Pas	cal is the uni	it for	:						
	(1)	Thrust			(2)	Pressure				
	(3)	Frequency			(4)	Conductivity	•			
223	.Sou	nd waves in	air a	re:		(A)				
	(1)	Transverse			(2)	Longitudinal	20			
	(3)	Electromage	netic		(4)	Polarised				
224	.Whe	en a red glas	s is h	eated in da	rk ro	oom, it will se	em:			
		Black		Green		Yellow		Red .		
225		e spinning s body at the e			ı is ir	ncreased, the	n the	e weight of		
	(1)	Increases			(2)	Decreases				
	(3)	Doubles			(4)	Does not cha	ange			
226.	a str		long.	If it makes		a circular pa mplete revolu				
	(1)	1.77 N	(2)	9.65 N	(3)	3.45 N	(4)	7.36 N		
227	.Whi	ch one of the	follov	ving pair of	ravs	is electromagr	etic	in nature :		
	(1)	Alpha rays a			(2)					
	(3)	Infrared ray								

P.T.O.

its	e moment of center is 0.13 weight of the	Kgn	12. What is	the ra	dius of this	eel rota wheel	ating abo , assumi	ut . ng
(1)	0.45 m	(2)	0.36 m	(3)	0.79 m	(4)	1.01 m	
229. Op	tical fiber wo	rks o	n the prin	ciple (of:	•		
(1)	Refraction		č:	(2)	Internal re	fractio	m	
(3)	Scattering	ų.		(4)	Interferen	ce		
tem	w much wor perature of paric process	5 m						
-(1)	83.1 J	(2)	73.2 J	(3)	12.6 J	(4)	33.7 J	
elec	losed surface tric flux thro	ugh	loses a net the surfac	t char e?(e	ge of 10nC = 8.85 × 1	. What	t is the n /m)	et
	1130 Nm ² /		*		1654 Nm ²		*0	
(3)	1931 Nm ² /	С		(4)	4397 Nm ²	/C	•	
232.A at stre	nd B are two stched by the	wire sam	s. The radi ie load. Th	us of en th	A is twice t	hat of I B is :	3. They a	re
50.00	Equal to the			(2)	Four time	s that	on A	ë
(3)	Two times t	hat c	ın A	(4)	Half that o	n A		
are	Young's mo ee wires mad as in the raingation's in the	de of tio I	: 2 : 3. I	terial For a	s have the given stre	T Cros	8-section	al
3000	1:2:3			(2)	3:2:1			
(3)	5:4:3			(4)	6:3:4	3.5	E) ()4	
234.Wh	en an electro	n fal	ls from an	orbit	where n = 2	2 to n =	= 1 :	
(1)	A photon is				**************************************			
(2)	A photon is	abso	rbed					
(3)	The atomic	ener	gy decreas	es' to	zero			
(4)	The atomic				10 8. 8			
	18 18	,			•	99		

	radi rigid	us r/2 of sar	ne ma	aterial. The e end of la	free	ed to a rod of end of small rod is given	rod is	s fixed to a
	(1)	θ/4	(2)	0/2	(3)	5 ₀ /6	(4)	8 ₀ /9
236	Pres Rati	ssure inside o between tl	two s neir v	oap bubble olume is :		1.01 and 1.0		ospheres.
	(1)	102:101				$(102)^3:(103)^3$	Γ) 3	
\cdot	(3)	8:1		39	(4)	2:1		
237	SHN osci sam	If at the sam llations of t upe phase :	ne tin he sr	ne from the naller pend	e me dulu	ods T and 5 an position. m they will	be ag	ain in the
	(1)		(2)			11	(4)	
238	.Phe	nomenon in	which	radiations	split	matter in to	ions is	called?
	(1)	Denaturing				Ionization		
0	-	Condensati			(4)	Excitation		
239	pas	sed through perties of the	the e ator	foil un-de n can be e	eflect xplai	t, most of the ed. Which oned from thi oncentrated	s obs	ervation?
	(2)	The nucleu	s has	electrons	and	protons		
	(3)	The atomic	mas	s is distrib	uted	evenly throu	ighou	t the atom
	(4)	The size of	the n	ucleus is r	nuch	less than th	ne size	of the
		atom	3				20	22
240	eV : eV.	110 011 -	0000	white little	WOT	one by photo k function of n speeds of e	LITE I	iterating o.o.
	(1)	0.78	(2)	0.65	(3)	0.34	(4)	0.22
	(1)	10 7 0750173	25 AL			100 (1)		12

ROUGH WORK

17 P.T.O

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्याइंट पेन से ही लिखे)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई
 प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
 प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से विधा गवा है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मृल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रवस पृष्ठ वर पैन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गावा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवृल ओ एम आर उत्तर-मत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।